207 research outputs found

    Biochemical characterization of the initial steps of the Kennedy pathway in Trypanosoma brucei:the ethanolamine and choline kinases

    Get PDF
    Note related output below contains correction of this paper.Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (glycero-phosphoethanolamine) and GPCho (glycerophosphocholine). Ethanolamine is also found as an integral component of the GPI (glycosylpliosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway. Database mining revealed two putative C/EKs (choline/ethanolamine kinases) in the Trypanosoma brucei genome, which were cloned, overexpressed, purified and characterized. TbEK 1 (T brucei ethanolamine kinase 1) was shown to be catalytically active as an ethanolamine-specific kinase, i.e. it had no choline kinase activity. The K values for ethanolamine and ATP were found to be 18.4 +/- 0.9 and 219 29 mu M respectively. TbC/EK2 (T brucei choline/ethanolamine kinase 2), on the other hand, was found to be able to phosphorylate both ethanolamine and choline, even though choline was the preferred substrate, with a K-m 80 times lower than that of ethanolamine. The K. values for choline, ethanolamine and ATP were 31.4 +/- 2.6 mu M, 2.56 +/- 0.31 mu M and 20.6 +/- 1.96 mu M respectively. Further substrate specificity analysis revealed that both TbEK1 and TbC/EK2 were able to tolerate various modifications at the amino group, with the exception of a quaternary amine for TbEK1 (choline) and a primary amine for TbC/EK2 (ethanolamine). Both enzymes recognized analogues with substituents oil C-2, but substitutions oil C-1 and elongations of the carbon chain were not well tolerated.Publisher PDFPeer reviewe

    Self-directed growth of AlGaAs core-shell nanowires for visible light applications

    Full text link
    Al(0.37)Ga(0.63)As nanowires (NWs) were grown in a molecular beam epitaxy system on GaAs(111)B substrates. Micro-photoluminescence measurements and energy dispersive X-ray spectroscopy indicated a core-shell structure and Al composition gradient along the NW axis, producing a potential minimum for carrier confinement. The core-shell structure formed during the growth as a consequence of the different Al and Ga adatom diffusion lengths.Comment: 20 pages, 7 figure

    The Anderson Model out of equilibrium: Time dependent perturbations

    Full text link
    The influence of high-frequency fields on quantum transport through a quantum dot is studied in the low-temperature regime. We generalize the non crossing approximation for the infinite-U Anderson model to the time-dependent case. The dc spectral density shows asymmetric Kondo side peaks due to photon-assisted resonant tunneling. As a consequence we predict an electron-photon pump at zero bias which is purely based on the Kondo effect. In contrast to the resonant level model and the time-independent case we observe asymmetric peak amplitudes in the Coulomb oscillations and the differential conductance versus bias voltage shows resonant side peaks with a width much smaller than the tunneling rate. All the effects might be used to clarify the question whether quantum dots indeed show the Kondo effect.Comment: 13 pages, REVTEX 3.0, 5 figure

    Mode-Locking in Quantum-Hall-Effect Point Contacts

    Full text link
    We study the effect of an ac drive on the current-voltage (I-V) characteristics of a tunnel junction between two fractional Quantum Hall fluids at filling ν−1\nu ^{-1} an odd integer. Within the chiral Luttinger liquid model of edge states, the point contact dynamics is described by a driven damped quantum mechanical pendulum. In a semi-classical limit which ignores electron tunnelling, this model exhibits mode-locking, which corresponds to current plateaus in the I-V curve at integer multiples of I=eω/2πI= e\omega /2\pi, with ω\omega the ac drive angular frequency. By analyzing the full quantum model at non-zero ν\nu using perturbative and exact methods, we study the effect of quantum fluctuation on the mode-locked plateaus. For ν=1\nu=1 quantum fluctuations smear completely the plateaus, leaving no trace of the ac drive. For ν≥1/2\nu \ge 1/2 smeared plateaus remain in the I-V curve, but are not centered at the currents I=neω/2πI=n e \omega /2\pi. For ν<1/2\nu < 1/2 rounded plateaus centered around the quantized current values are found. The possibility of using mode locking in FQHE point contacts as a current-to-frequency standard is discussed.Comment: 12 pages, 8 figures, minor change

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Gibberellin Biosynthetic Inhibitors Make Human Malaria Parasite Plasmodium falciparum Cells Swell and Rupture to Death

    Get PDF
    Malaria remains as one of the most devastating infectious disease, and continues to exact an enormous toll in medical cost and days of labor lost especially in the tropics. Effective malaria control and eventual eradication remain a huge challenge, with efficacious antimalarials as important intervention/management tool. Clearly new alternative drugs that are more affordable and with fewer side effects are desirable. After preliminary in vitro assays with plant growth regulators and inhibitors, here, we focus on biosynthetic inhibitors of gibberellin, a plant hormone with many important roles in plant growth, and show their inhibitory effect on the growth of both apicomplexa, Plasmodium falciparum and Toxoplasma gondii. Treatment of P. falciparum cultures with the gibberellin biosynthetic inhibitors resulted in marked morphological changes that can be reversed to a certain degree under hyperosmotic environment. These unique observations suggest that changes in the parasite membrane permeability may explain the pleiotropic effects observed within the intracellular parasites

    Major Surface Glycoproteins of Insect Forms of Trypanosoma brucei Are Not Essential for Cyclical Transmission by Tsetse

    Get PDF
    Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host

    Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites

    Get PDF
    The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth

    Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress

    Get PDF
    The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection

    Bioinformatics and Functional Analysis of an Entamoeba histolytica Mannosyltransferase Necessary for Parasite Complement Resistance and Hepatical Infection

    Get PDF
    The glycosylphosphatidylinositol (GPI) moiety is one of the ways by which many cell surface proteins, such as Gal/GalNAc lectin and proteophosphoglycans (PPGs) attach to the surface of Entamoeba histolytica, the agent of human amoebiasis. It is believed that these GPI-anchored molecules are involved in parasite adhesion to cells, mucus and the extracellular matrix. We identified an E. histolytica homolog of PIG-M, which is a mannosyltransferase required for synthesis of GPI. The sequence and structural analysis led to the conclusion that EhPIG-M1 is composed of one signal peptide and 11 transmembrane domains with two large intra luminal loops, one of which contains the DXD motif, involved in the enzymatic catalysis and conserved in most glycosyltransferases. Expressing a fragment of the EhPIG-M1 encoding gene in antisense orientation generated parasite lines diminished in EhPIG-M1 levels; these lines displayed reduced GPI production, were highly sensitive to complement and were dramatically inhibited for amoebic abscess formation. The data suggest a role for GPI surface anchored molecules in the survival of E. histolytica during pathogenesis
    • …
    corecore